Skip to main content
Log in

Elementary Electrostatic Phenomena: Historical Hindrances and Students’ Difficulties1

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Categories of explanation for electrostatic phenomena derived from a brief historical survey are used to interpret the responses of students aged 17 to 21 to questionnaire items describing five experimental situations. Most of the students’ interpretations of electrostatic phenomena used ideas about the electric nature of matter that recalled pre-Newtonian explanations.

Résumé

Cette recherche se penche sur les explications des phénomènes électrostatiques fournies par les étudiants. Dans la conception de l’apprentissage qu’ont les auteurs, les idées des étudiants ne sont autres que les relations entre ces étudiants et les phénomènes naturels ou scientifiques qu’ils étudient (Marion et Booth, 1997). En effet, sur le plan qualitatif, les étudiants élaborent différentes manières de comprendre un phénomène donné, qui peuvent être classées en catégories générales de description. Les auteurs montrent également qu’il est important de procéder à une étude critique de l’histoire de l’électrostatique si l’on veut prévoir les explications que peuvent donner les étudiants lorsqu’ils tentent d’interpréter les phénomènes électrostatiques. Une brève analyse historique a fait ressortir les problèmes fréquemment relevés dans l’évolution de la théorisation en électrostatique, problèmes dont les auteurs se servent pour analyser les explications de certains faits fournis par les étudiants d’aujourd’hui. Les résultats indiquent que les étudiants utilisent plusieurs types de notions et de liens pour expliquer les phénomènes, et que ces notions peuvent être classées en fonction de plusieurs catégories de description. De plus, le choix des catégories de la part des étudiants dépend de la complexité de la tâche. La plupart des interprétations des phénomènes électrostatiques fournies par les étudiants impliquent des notions sur la nature électrique de la matière qui diffèrent de la théorie de Newton (qui considère l’électricité comme un ensemble de charges qui agissent à distance). Plutôt, elles rappellent les explications pré-newtoniennes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andersson, J.R. (1990). Cognitive psychology and its implications. New York: W.H. Freeman.

    Google Scholar 

  • Bar, V., Zinn, B., & Rubin, E. (1997). Children’s ideas about action at a distance. International Journal of Science Education, 19(10), 1137–1157.

    Article  Google Scholar 

  • Benshegir, A., & Closset, J.L. (1996). The electrostatics-electrokinetics transition: Historical and educational difficulties. Internationaljournal of Science Education, 18(2), 179–191.

    Google Scholar 

  • Bevilacqua, F., & Giannetto, E. (1998). The history of physics and European physics education. In B.J. Fraser & K.G. Tobin (Eds.), International Handbook of Science Education (Vol. 2, pp. 1015–1026). Dordrecht: Kluwer Academic.

    Article  Google Scholar 

  • Conant J.B., Nash, L.K., Roller, D., & Roller, D.H.D. (1962). Harvard case histories in experimental science: The development of the concept of electric charge. Boston, MA: Harvard University Press.

    Google Scholar 

  • Cook T.D., & Reinardt, C.S. (1982). Qualitative and quantitative methods in evaluation research. London: Sage.

    Google Scholar 

  • Chabay, R., & Sherwood, B. (2002). Matter and interactions. New York: John Wiley.

    Google Scholar 

  • Champagne A.B., Gunstone R.F., & Klopfer, L.E. (1985). Effecting changes in cognitive structures among physics students. In L.H.T. West & A.L. Pines (Eds.), Cognitive structure and conceptual chang. (pp. 124–136). Orlando, FL: Academic Press.

    Google Scholar 

  • de Coulomb, C.-A. (1884). Collection de mémoires relatifs à la physiqu. (Vol. 1). Paris: Societé français de physique.

  • Driver, R., Squires, E., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children’s ideas. London: Routledge.

    Google Scholar 

  • Duschl, R.A. (1994). Research on the history and philosophy of science. In D.L. Gabel (Ed.), Handbook of research on science teaching and learnin. (pp. 443–465). New York: Macmillan.

    Google Scholar 

  • Eylon, B., & Ganiel, U. (1990). Macro-micro relationships: The missing link between electrostatics and electrodynamics in students’ reasoning. International Journal of Science Education, 12(1), 79–94.

    Article  Google Scholar 

  • Ferreira, N. (1987). Activités en électrostatique. Bulletin de l’Union des Physiciens, (713), 477–490.

    Google Scholar 

  • Furió, C., Calatayud, M.L., Bárcena, S., & Padilla, D.H. (2000). Functional fixedness and functional reduction as common sense reasonings in chemical equilibrium and in geometry and polarity of molecules. Science Education, 84, 545–565.

    Article  Google Scholar 

  • Furió, C., & Guisasola, J. (1998). Difficulties on learning the concept of electric field. Science Education, 82(4), 511–526.

    Article  Google Scholar 

  • Furió, C., Guisasola, J., Almudi, J.M., & Ceberio, M. (2003). Learning the electric field concept as oriented research activity. Science Education, 87, 640–662.

    Article  Google Scholar 

  • Gil, D., & Carrascosa, J. (1985). Science learning as a conceptual and methodological change. European Journal of Science Education, 5, 70–81

    Google Scholar 

  • Gil, D., & Carrascosa, J. (1994). Bringing pupils’ learning closer to a scientific construction of knowledge: A permanent feature in innovations in science teaching. Science Education, 78(3), 301–315.

    Article  Google Scholar 

  • Gruender, C.D., & Tobin, K. (1991). Promise and prospect. Science Education, 75(1), 1–8.

    Article  Google Scholar 

  • Guisasola, J. (1997). El trabajo científico y las tareas en la electrostática en textos de Bachillerato [Scientific work and the electrostatic task proposed in the text books at sixth-form level]. Alambique. Didáctica de las ciencias experimentales, 11, 45–54.

    Google Scholar 

  • Guruswamy, C., Somers, M.D., & Hussey, R.G. (1997). Students’ understanding of the transfer of charge between conductors. Physics Education, 32(2), 91–96.

    Article  Google Scholar 

  • Hashweh, M.Z. (1986). Towards an explanation of conceptual change. European Journal of Science Education, 8(3), 229–249.

    Article  Google Scholar 

  • Heilbron, J.L. (1979). Electricity in the 17th and 18th centuries. A study of early modern physics. San Francisco, CA: University of California Press.

    Google Scholar 

  • Hewson, P.W., & Thorley, N.R. (1989). The conditions of conceptual change. International Journal of Science Education, 11, 541–553.

    Article  Google Scholar 

  • Lybeck, L., Marton, F., Strömdahl, H., & Tullberg, A. (1988). The phenomenography of the mole concept’ in chemistry. In P. Ramsden (Ed.), Improving learning: New perspective. (pp. 91–112). London: Routledge.

    Google Scholar 

  • Marton, F. (1981). Phenomenography: Describing conceptions of the world around us. Instructional Science, 10, 177–200.

    Article  Google Scholar 

  • Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Matthews, M.R. (1997). Introductory comments on philosophy and constructivism in science education. Science and Education, 6, 5–14.

    Article  Google Scholar 

  • Pfundt, H., & Duit, R. (1997). Bibliography: Student’s alternative frameworks and science education (5th ed.). Kiel: Institute for Science Education (IPN): University of Kiel.

    Google Scholar 

  • Pozo, J.I., & Gomez, M.A. (1998). Aprender y enseñar ciencia. Del conocimiento cotidiano al conocimiento cientifico [Learning and teaching science: From everyday knowledge to scientific knowledge]. Madrid: Morata.

    Google Scholar 

  • Priestley, J. (1966). The history and present state of electricit. (Vols. 1–2). New York: Johnson Reprint. (Original work published 1775)

  • Rainson, S., Tranströmer, G., & Viennot, L. (1994). Students’ understanding of superposition of electric fields. American Journal of Physics, 62(11), 1026–1032.

    Article  Google Scholar 

  • Salinas, J., Cudmani, L., & Pesa, M. (1996). Modos espontâneos de razonan un anâlisis de su incidencia sobre el aprendizaje del conocimiento fîsico a nivel universitario básico [Spontaneous ways of reasoning: Analysis of its influence on the meaningful learning of physics at university level]. Enseñanza de las Ciencias, 14(2), 209–220.

    Google Scholar 

  • Saltiel, E., & Viennot, L. (1985). ¿Qué aprendemos de las semejanzas entre las ideas históricas y el razonamiento espontáneo de los estudiantes? [What do we learn from the similarities between historical ideas and students’ spontaneous reasoning?]. Enseñanza de las Ciencias, 3(2), 137–144.

    Google Scholar 

  • Seroglou, F., Komouras, P., & Tselfes, V. (1998). History of science and instructional design: The case of electromagnetism. Science and Education, 7, 261–280.

    Article  Google Scholar 

  • Solbes, J., & Traver, M.J. (1996). La utilización de la historia de las ciencias en la enseñanza de la Fisica y Química [Using the history of science in physics and chemistry teaching]. Enseñanza de las Ciencias, 14(1), 103–112.

    Google Scholar 

  • Strömdahl, H., Tullberg, A., & Lybeck, L. (1994). The qualitative different conceptions of 1 mol. International Journal of Science Education, 16(1), 17–26.

    Article  Google Scholar 

  • Taton, R. (1988). Histoire generale des sciences. Paris: Presses Universitaires de France.

    Google Scholar 

  • Tömkvist, S., Pettersson, K.A., & Tranströmer, G. (1993). Confusion by representation: On student’s comprehension of the electric field concept. American Journal of Physics, 61(4), 335–338.

    Article  Google Scholar 

  • Toulmin, R. (1972). Human understanding: The collective use and evolution of concepts. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Viennot, L. (1995). A multidimensional approach to characterise a conceptual state in students: The role played by questions. In P. Sillos (Ed.), Proceedings of the second PhD summer school (pp. 178–187). Thessaloniki: Aristotle University of Thessaloniki.

    Google Scholar 

  • Viennot, L. (1996). Raisonner en physique. La part du sens commun. Paris: De Boeck Université.

    Google Scholar 

  • Viennot, L., & Rainson, S. (1992). Students’ reasoning about the superposition of electric field. International Journal of Science Education, 14(4), 475–487.

    Article  Google Scholar 

  • Wandersee, J.H. (1986). Can the history of science help science educators anticipate students’ misconceptions? Journal of Research in Science Teaching, 23, 415–426.

    Article  Google Scholar 

  • Wandersee, J.H. (1992). The historicality of cognition: Implications for science education research. Journal of Research in Science Teaching, 29(4), 423–434.

    Article  Google Scholar 

  • Wandersee, J.H., Mintzes, J.J., & Novak, J.D. (1994). Research on alternative conceptions in Science. In D.L. Gabel (Eds.), Handbook of research on science teaching and learnin. (pp. 177–210). New York: Macmillan.

    Google Scholar 

  • White, R., & Gunstone, R. (1992). Probing understanding. London: Palmer Press.

    Google Scholar 

  • Whittaker, E. (1987). A history of the theories of aether and electricity. New York: American Institute of Physics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is the final report of our research into how students understand basic electrostatic theory. The initial report of the preliminary study, ‘Problemas históricos y dificultades de aprendizaje en la interpretación newtoniana de fenómenos electrostáticos considerados elementales [Historical Problems and Learning Difficulties in the Newtonian Interpretation of Supposedly Elementary Electrostatic Phenomena],’ was published in Spanish, in the Brazilian journal, Investigações em Ensino de Ciências /Investigations in Science Education, available http://www.if.ufrgs.br/public/ensino/vol3/n3/v3_n3_a2.htm (accessed April 27, 2004). For the benefit of those who don’t read Spanish, parts of that report, necessary to understanding the research, have been translated and incorporated into the present article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furió, C., Guisasola, J. & Almudí, J.M. Elementary Electrostatic Phenomena: Historical Hindrances and Students’ Difficulties1. Can J Sci Math Techn 4, 291–313 (2004). https://doi.org/10.1080/14926150409556616

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150409556616

Navigation